
Sampling distributions and Estimation 
 
Suppose we have a population about which we want to know some 
characteristic, e.g. height, income, voting intentions. If it is a large 
population, it may be difficult to look at every individual. We therefore 
take a sample. For example, if we want to know the average height of the 
population, we might sample 100 people and take the average height of 
the sample. But how good an estimate will this be? Is it likely to be 
biased upwards or downwards from the population average? How 
inaccurate is it likely to be? How big a sample do we need to be confident 
of getting a figure close to the true figure? These are the sorts of 
questions answered in this and subsequent sections. 
 
We discuss sampling with and without replacement, and from finite and 
infinite populations. We shall start by assuming that samples are 
randomly selected from the population, and that they are large, e.g. 30 
observations or larger. Small samples will be dealt with later. 
 
Each type of sampling leads to a different sampling distribution. The 
sampling distribution of a parameter, such as sample mean or sample 
proportion is either a theoretical distribution, like the normal, or is 
obtained by taking many samples of the same size from a population and 
constructing a frequency distribution. 
 
Distribution of the sample mean 
 
Let us assume that we take a random sample from an infinite population 
or from a finite population with replacement. If a random sample of size n 
is taken from a population with mean µ and variance σ2, the sample mean 
is given by 
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Where X1 is the value of the first observation, etc. Before each 
observation is chosen, it could take any value in the population. In other 
words, X1….Xn are random variables having the same distribution as the 
population. Hence X , as a linear combination of random variables, is 
also a random variable. Moreover, as the population is infinite or, if finite, 
we sample with replacement, the observations are independent. Thus we 
can easily find the expected value of X : 
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Using results from the previous section. Thus, on average, the sample 
mean will be equal to the population mean. Later we shall see that this 
means that the sample mean is an unbiased estimator of the population 
mean. 
 
We may also find the variance of the sample mean: 
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Hence, the variance of the sample mean declines as n increases. We call 
the resulting distribution the sampling distribution of X , and the standard 

deviation of this distribution (
n
σ ) is called the standard error of the 

sampling distribution of X . When n is large, the standard error will be 
very small, so that there will be hardly any sampling error involved in 
using X  as an estimate for the population mean. Note however that, 
because of the square root sign, if we want to halve the standard error, we 
must quadruple the sample size. 
 
In general, this result means that, if σ is known, we can choose n to 
achieve any desired degree of accuracy of our estimate X  for the 
population mean. (That is, any desired standard error). 
 
If the distribution of X in the population is normal, then the distribution 
of X  will also be normal, as it is a linear combination of normal 
variables. What is more, even if X is not normally distributed, there is an 
extremely powerful theorem called the Central Limit Theorem (CLT) that 
says that provided the sample size is sufficiently large (say n≥30), that 



X  will nonetheless have an approximately normal distribution – the 
higher the sample size, the closer the distribution of X  to a normal 
distribution. 
 
Distribution of the sample variance 
 
What if we don’t know either the mean or the standard deviation of a 
variable X in a population, and wish to try to estimate it by looking at the 
sample variance and standard deviation? 
 
Let the variable X be distributed with E(X)=µ and Var(X)=σ2 (which are 
both unknown). We take a sample of size n, X1,…,Xn. So these are 
independent r.v.s, with the same distribution as X. 
 

The sample variance is equal to S2=
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squared deviation from the mean. Let us call this quantity S2.  
 

It can be shown* that E(S2) = 21σ
n

n −  - in other words, the sample 

variance is on average smaller than the population variance – it is a 
biased estimate. Intuitively, this is because the first observation gives us 
no idea of the variance – we need at least two to see a difference between 
them. Hence we ‘lose an observation’ when estimating the variance. 
 
This is not too much of a problem, as we can multiply our sample 

variance by (n-1)/n to compensate. Let 
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We shall not for now consider the variance of this statistic. 
 
Distribution of sample proportion 
 
Suppose in a given population, there is a proportion P with a certain 
attribute. So selecting a random individual from that population to see if 
they have that attribute is a Bernoulli trial. If we select n people at 
random from the population (with replacement if the population is not 



infinite), then the number X of individuals in the sample with the attribute 
will have a binomial distribution, X~B(n,P). 
 
We saw in the last session that we can work out the sample proportion, 
p=X/n, which we can use as an estimate for the population proportion, or 
probability P of ‘success’ in each trial. 
 
We also saw that this sample proportion p has E(p)=P, and Var(P)=P(1-
P)/n. In other words, the sample proportion is an unbiased estimate for the 
population proportion, and the standard error of the estimate, that is the 

standard deviation of the distribution, which is equal to 
n

PP )1( − , 

decreases as n increases, in other words the estimate becomes more 
accurate in a larger sample. 
 
What is more, it can be shown that as n increases, the distribution of the 
sample proportion tends towards a normal distribution, in other words 
 
p→N(P,P(1-P)/n)). 
 
Thus the distribution of the sampling proportion is fully specified, and 
can be used to obtain an estimate of the population proportion of any 
desired degree of accuracy, i.e. of standard error, given a sufficiently 
large sample. 
 
Estimation 
 
An important use of sampling theory is to estimate parameters of the 
population and to assess accuracy of such estimates. A point estimate of a 
parameter of a population is a single-valued estimate derived from sample 
information. A parameter of a population may be a mean, or variance of 
some variable, or a correlation coefficient between two variables, or 
generally any other statistic relating to measurable variables in the 
population.  
 
For example, we may use sample mean as an estimate for the mean of a 
variable, sample proportion as an estimate of the proportion of the 
population with a certain attribute, etc. In econometrics, we see how we 
derive estimates of the regression coefficients of the relationship between 
two or more variables. 
 



Formally, an estimator of a population parameter θ, relating to a variable 
X, based on a on sample X1,…,Xn, is a function ),...,(ˆ 1 nXXθ . For 
example, if θ is the mean of a variable X, then we may use 
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one variable, whereupon the estimator can be a function of the values of 
each variable in the sample. 
 
Of course, not any function of the data will serve as a good estimator. We 
look for certain desirable properties of estimators: 
 
Unbiasedness 
 
An estimator θ̂  of a parameter θ is said to be unbiased if E(θ̂ )=θ. 
Otherwise it is biased. 
 
In other words, on average the estimator should equal the ‘true’ value. 
 
Efficiency 
 
As well as the property of unbiasedness, we are interested in the accuracy 
of an estimator, that is, how far it is likely to be from the population 
parameter. This is measured by the Standard Error of the estimator, given 
by 
 
SE(θ̂ )=E(θ̂ -θ)2. If θ̂  is unbiased, then this simplifies to; 
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Since θ is a constant 
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Since θ is unbiased, so E(θ)=θ̂  
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Again since θ is unbiased. 
 



If we have two unbiased estimators, θ1 and θ2, we say θ1 is more efficient 
than θ2 if SE(θ1)<SE(θ2). 
 
Consistency 
 
An estimator θ̂  is said to be a consistent estimator of θ if as n tends to ∞, 
E(θ̂ ) tends to θ, and Var(θ̂ ) tends to 0. 
 
Thus, a biased estimator can be nonetheless consistent. For example, we 
defined above the estimator s2, the sample variance, as an estimator for 
the population variance σ2. This is biased as E(s2)=(n-1)σ2/n. However, as 
n tends to ∞, (n-1)/n tends to 1, so E(s2) tends to σ2. It can also be shown 
that Var(s2) tends to 0 as n increases. Hence s2 is a consistent estimator 
for σ2. 
 
Biased but consistent estimators may therefore be used with large 
samples. (say, at least n=30). 
 
Interval estimates (confidence intervals) 
 
An alternative to a point estimator is an interval estimate, also called a 
confidence interval. Such an interval specifies a range which is likely to 
contain the population parameter with a given probability. The 
calculation of a confidence interval is based on the sampling distribution, 
which for large samples (n>30) can be assumed to be approximately 
normal. 
 
Using X  as an example of an estimator (for µ=E(X), for some r.v. X), 
note that we know from the Central Limit Theorem that  
 
X →N(µ,σ2/n). We know that P[-1.96<z<1.96] = 0.95, where z~N(0,1). 
Hence by the linear properties of the normal distribution,  
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That is, the probability that any normal variable is within 1.96 standard 
deviations of its mean is 0.95, or 95%. Rearranging this inequality gives 
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This result gives us the 95% confidence interval for the population mean, 
µ, with ( X -1.96σ/√n) being the lower limit, and ( X +1.96σ/√n) being the 
upper limit of the interval. 
 
If we wanted a 90% confidence interval instead, we would replace 1.96 In 
the inequality with 1.645, since P(-1.645<z<1.645)=0.9, where z~N(0,1). 
 
Note that µ isnot a variable which falls into the calculated confidence 
interval with 0.95 probability. It is a constant which is either inside the 
confidence interval or outside it. The random variable here is not µ, but 
the confidence interval itself, which will be different each time we take a 
sample. The 95% probability tells us that, 95% of the time, the 
confidence interval we calculate from our random sample will contain the 
actual population parameter µ. 
 
In the case of the population proportion related to a binomial distribution, 
if P is the population proportion and p the sample proportion, we know 
that for n large, p→N(P,P(1-P)/n). Hence, we can derive a 95% 
confidence interval for P, given by: 
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Again, this is based on the fact that 95% of the time, a normal variable (in 
this case p), will fall within 1.96 standard deviations of its mean. In this 
case the mean is P, and the SD is √(P(1-P))/n. Note that the letter P here 
is used both as the population proportion, and to denote the probability 
operator. 
 



 


